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ABSTRACT

A novel model for the variability in aerosol optical thickness (AOT) is pre-

sented. This model is based on the consideration of AOT fields as realizations

of a stochastic process, that is the exponent of an underlying Gaussian pro-

cess with a specific autocorrelation function. In this approach AOT fields have

lognormal PDFs and structure functions having the correct asymptotic behav-

ior at large scales. The latter is an advantage compared with fractal (scale-

invariant) approaches. The simple analytical form of the structure function in

the proposed model facilitates its use for the parameterization of AOT statis-

tics derived from remote sensing data. The new approach is illustrated using a

month-long global MODIS AOT dataset (over ocean) with 10 km resolution.

It was used to compute AOT statistics for sample cells forming a grid with

5◦ spacing. The observed shapes of the structure functions indicated that in a

large number of cases the AOT variability is split into two regimes that exhibit

different patterns of behavior: small-scale stationary processes and trends re-

flecting variations at larger scales. The small-scale patterns are suggested to

be generated by local aerosols within the marine boundary layer, while the

large-scale trends are indicative of elevated aerosols transported from remote

continental sources. This assumption is evaluated by comparison of the geo-

graphical distributions of these patterns derived from MODIS data with those

obtained from the GISS GCM. This study shows considerable potential to

enhance comparisons between remote sensing datasets and climate models

beyond regional mean AOTs.
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1. Introduction38

Atmospheric aerosols through their direct and indirect radiative effects remain a significant39

source of uncertainty for the historical forcing of climate (Hansen et al. 2000; Myhre et al. 2013;40

Koch et al. 2007; Unger et al. 2008) and consequently for the assessment of projected change.41

Resolving this uncertainty requires the synergistic combination (through inter-comparisons and42

assimilations) of aerosol models and observational datasets (Kinne et al. 2006; Quaas et al. 2009;43

Huneeus et al. 2011). As a part of an effort to define new strategies and methodologies for the44

inter-comparison of model and satellite data it looks promising to include analysis of more de-45

tailed characteristics of aerosol variability and go beyond traditional comparison of aerosol optical46

thickness (AOT) averaged over a geographical region. In particular, structure functions (SFs)47

provide a uniform description of the strength and spatial scale of AOT fluctuations. The structure48

function (see e.g., Davis et al. (1994) and the next section) describes the average difference in value49

over scale. In the framework of traditional scale-invariant (fractal) models the SF is assumed to50

have a power-law form characterized by the scaling (Hurst) exponent H. SFs together with power51

spectra have been widely used to characterize scaling of turbulence-driven fluctuations of various52

atmospheric fields, such as temperature, wind speed, humidity, etc. (e.g., Gage and Nastrom 1986;53

Lilly 1989; Lovejoy and Schertzer 2010, 2012). Scaling techniques were also successfully used54

in analysis of various cloud datasets (Cahalan and Snider 1989; Davis et al. 1996, 1997, 1999;55

Marshak et al. 1997).56

The scaling properties of AOT were studied by Anderson et al. (2003) using autocorrelation57

statistics. This study revealed that mesoscale aerosol variability (at 40 – 400 km scales) is a com-58

mon feature of lower-tropospheric aerosol light extinction. Another application of scaling analysis59

to AOT variability was performed by Alexandrov et al. (2004). They studied AOT scaling using60
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the 1-month dataset from a sun-photometers network operated by the U.S. Department of Energy61

Atmospheric Radiation Measurement program in Oklahoma and Kansas. The network provided62

an irregular grid with the mean distance between neighboring sites of roughly 80 km and tempo-63

rally the sampling was 20 s. This data set therefore allowed for both temporal and spatial AOT64

variability to be analyzed. Alexandrov et al. (2004) found that the temporal variability of AOT65

can be separated into two scale-invariant regimes: microscale (0.5 – 15 km) where fluctuations66

are governed by 3D turbulence (H ≈ 0.3); and intermediate scale (15 – 100 km) characterized by67

a transition towards large-scale 2D turbulence (H ≈ 0.4 – 0.5). The temporal evolution of AOT68

scaling exponents during the month appeared to be correlated with changes in aerosol vertical69

distribution, while their spatial variability reflected the site’s topography.70

Unfortunately, the scale-invariant variability model with its power-law SF being divergent at71

large scales does not naturally reflect an important statistical property of real AOT fields: the72

statistical independence of AOT values at points separated by a large distance. This property73

means that the SF approaches a constant value (double the AOT variance) at a sufficiently large74

scale. To deal with this problem within the fractal framework a number of scaling regimes are75

introduced separated by scale breaks. In this study we present a new AOT variability model that76

has an advantage over the scale-invariant approach because its SFs have the correct asymptotic77

behavior. In this approach we construct an AOT field by taking the exponent of an underlying78

Gaussian random process with specified autocorrelation function. This ensures that AOT fields79

have lognormal PDFs (O’Neill et al. 2000), while their structure functions are power-law at small80

scales and approach a constant at large scales. The simple analytical expression for the SF of this81

model facilitates its application to real AOT datasets.82

We will apply our analytical model to the statistics derived from global Moderate Resolution83

Imaging Spectroradiometer (MODIS) AOT product (Remer et al. 2005, 2008; Levy et al. 2010).84
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It will be shown that the shapes of the MODIS-derived SFs in many cases suggest the presence of85

two distinctive variability modes, which we attribute to two aerosol layers separated by height (one86

within the boundary layer, the other above it). Such a separation adds a “third dimension” to the87

2D MODIS dataset, and can be quantitatively evaluated by comparison with the aerosol vertical88

structure in climate models (even if the climate model resolution is insufficient for computation of89

the SFs themselves). To demonstrate this possibility, we present a comparison between the aerosol90

modes derived from the MODIS dataset and those obtained using 3D AOT fields simulated by the91

NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) ModelE292

(Schmidt et al. 2014).93

2. Statistics of AOT fields94

Statistical properties of AOT (as well as of many other geophysical parameters) are characterized95

by their probability distribution (PDF) and structure functions (SF). The latter describes the de-96

pendence of the expected difference between AOT values measured at two points in space or time97

on their separation (see e.g., Davis et al. (1994); Alexandrov et al. (2004); Lovejoy and Schertzer98

(2012)). The SF is equivalent to the variogram that is used in geostatistics (Curran 1988). In our99

model we will use the second-order SF that is defined for a 1D case as follows100

S2(r) = [τ(x+ r)− τ(x)]2 (1)

=
1

L− r

L−r∫
0

[τ(x+ r)− τ(x)]2dx.

Here τ is the AOT, r is the lag, or separation between points, and the over-bar denotes averaging101

over x ∈ [0,L], where L is the sample size. This implies the validity of the ergodicity hypothesis102

such that an ensemble average over realizations is equivalent to an average over the spatial variable103
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x. The definition of S2 is equivalent to that of the variance of the increment field104

∆rτ(x) = τ(x+ r)− τ(x), (2)

i.e.105

S2(r) = Var(∆rτ), (3)

assuming that ∆rτ = 0. The structure function definition for the 2D case is similar to that for the106

1D case:107

S2(r) = [τ(x+ r)− τ(x)]2, (4)

where x and r are now 2D vectors, and r = |r|. The averaging in x is performed over some spatial108

domain. This implicitly assumes statistical isotropy of the AOT field.109

Computation of a structure function (1D or 2D) does not require continuity of the AOT dataset,110

which can have gaps or even be a collection of values at discrete points in space or time. To derive111

a SF we take all available data points and consider all possible pairs of them. For each pair we112

calculate the distance and the difference in AOT between the two points. Then the set of these113

distances and differences from all pairs is used to build a histogram (square difference in AOT vs.114

distance between points), which is the SF for this dataset.115

If the aerosol field consists of n independent (e.g., separated by height) layers each having an116

AOT of τ(i)(x), the total AOT117

τ(x) =
n

∑
i=1

τ
(i)(x) (5)

will have the following statistics:118

τ̄ =
n

∑
i=1

τ(i), Var(τ) =
n

∑
i=1

Var
(

τ
(i)
)
, (6)
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and119

S2(τ;r) =
n

∑
i=1

S2

(
τ
(i);r

)
. (7)

The latter relation follows from Eq. (3).120

In the important case of scale-invariant (fractal) fields structure functions have a power-law form:121

S2(r) ∝ r2H , (8)

where H ∈ (0,1) is the Hurst exponent (Mandelbrot 1982). Larger values of H correspond to122

smoother functions that may have substantial trends, while smaller values indicate finer scale vari-123

ability and more stationarity (see e.g., Marshak et al. (1997)). A Hurst exponent of 1/2 corresponds124

to classical Brownian motion (CBM), which is a Markov process with independent increments.125

Processes with other values of H, called fractional Brownian motions (FBM), are non-Markovian:126

their increments either correlate (for H > 1/2), or anti-correlate (for H < 1/2). The theoretical127

values of H that are characteristic of variability in wind speed and passive scalar advection in tur-128

bulent flows are 1/3 for 3D turbulence (Kolmogorov 1941), and 1 for 2D turbulence (e.g., Gage129

and Nastrom 1986). In their study of sun-photometer-derived AOT time series Alexandrov et al.130

(2004) found values of H ranging from 0.1 to 0.6.131

It is known that AOT fields exhibit a scale-invariant structure over certain scale ranges (Alexan-132

drov et al. 2004), however, AOT variability at all scales cannot be described by a single fractal133

model. It is natural to assume that the AOT values at two points located far enough from each134

other can be considered independent. Thus, at large scales S2(r) becomes the variance of the dif-135

ference between two independent variables, which is equal to the sum of the variances of those136

variables. As we assume that the AOT field is statistically homogeneous, these variances are the137

same and equal to the global variance of the dataset. Thus,138

S2(r→ ∞) ' 2 Var(τ), (9)
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is a scale-independent constant. A power-law SF Eq. (8), which diverges at large scales, is incon-139

sistent with this asymptotic constraint (i.e., the global variance does not exist in fractal models).140

This means that fractal characterization of AOT variability can be made only over a restricted range141

of scales, and the value of the exponent H will be dependent on the range of scales selected. In a142

model with finite global mean τ̄ and variance Var(τ) = s2 the autocorrelation function is defined143

to be144

W (r) =
[τ(x)− τ̄][τ(x+ r)− τ̄]

Var(τ)
, (10)

which is related to the structure function by the expression145

S2(r) = 2s2[1−W (r)]. (11)

The asymptotic condition Eq. (9) then means that W → 0 as r→ ∞.146

3. The statistical model for AOT147

In this Section we will define the AOT variability model and derive the corresponding expres-148

sions for structure and autocorrelation functions. AOT datasets are known to have lognormal PDFs149

(O’Neill et al. 2000) and it is therefore natural to use a statistical model of them where τ = exp(η),150

with η being a Gaussian field defined by its mean, variance, and autocorrelation function w(r).151

Realizations of such a process can be constructed using Fourier filtering techniques that use power152

spectrum computed for a prescribed autocorrelation function (see e.g., Bell (1987)). An alterna-153

tive method to generate a Gaussian field using the summation of multiple realizations of a binary154

Markov process is described in the supplemental material.155

It is shown in Appendix A following the approach described by Mejia and Rodriguez-Iturbe156

(1974) that the structure and autocorrelation functions of the AOT field can be expressed through157
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the autocorrelation function w(r) of the underlying Gaussian process:158

S2(r) = 2s2 u−uw(r)

u−1
, (12)

159

W (r) =
uw(r)−1

u−1
. (13)

Here we use the notation160

u =
s2 + τ̄2

τ̄2 , (14)

where τ̄ and s are respectively the mean and standard deviation of the AOT field. The function161

w(r) should be positive and obey the following properties: w(0) = 1 and w(r → ∞) = 0. The162

former insures that S2(0) = 0, while the latter means that S2(r→∞) = 2s2. Probably, the simplest163

functional form of w(r) satisfying these conditions is exponential:164

wM(r) = e−r/Le , (15)

where Le is the autocorrelation length. For example, the autocorrelation function of the Gaussian165

model based on binary Markov processes (see the supplemental material) has this form. When166

w(r) is exponential, the structure function is linear in the small-scale limit: S2(r� Le) ∝ r. This167

is appropriate for an AOT field that behaves as a classical Brownian motion (having the Hurst168

exponent H = 1/2). However, in our previous study (Alexandrov et al. 2004) that considered169

relatively small temporal and spatial scales we found that the AOT’s structure functions showed170

power-law dependence on the lag: S2(r� Le) ∝ r2H . We will see similar small-scale behavior171

of SFs computed for the MODIS AOT product. This means that at small scales real AOT fields172

resemble FBMs with Hurst exponents not necessarily equal to 1/2. These observations prompt us173

to generalize the exponential functional shape in Eq. (15) to accomodate the appropriate power174

law behavior for the small-scale limit case. We choose the following expression:175

w(r) = e−(r/Le)
2H
, (16)
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which is analytically simple and captures the observed behavior of real AOT fields. For non-176

exponential w(r) parameter Le is not precisely the autocorrelation length, so we will call it the177

“characteristic length” instead. It characterizes the typical size of inhomogeneities in the AOT178

field. Figure 1 shows how the shape of the reduced structure function S2(r)/2s2 computed accord-179

ing to Eqs. (12) and (16) depends on the three parameters: the relative standard deviation ν = s/τ̄ ,180

Le, and H. We see that the dependence on ν is relatively weak, while variations in Le change the181

length scale of the function. It is also seen that the SF’s value at r = Le does not depend on H (this182

simplifies fitting of remote sensing data).183

4. Derivation of the model parameters from observations184

We assume that the observational dataset provides a PDF of AOT values (from which we deter-185

mine the mean τ̄ and the standard deviation s), as well as the structure function S2(r). Then, we186

compute the parameter u according to Eq. (14) and derive the formula187

w(r) =
1

lnu
ln
[

u− u−1
2s2 S2(r)

]
(17)

from Eq. (12). After this, the model parameters can be obtained from Eq. (16) when it is written188

as189

− lnw(r) =
(

r
Le

)2H

. (18)

First, we determine Le from the condition190

− lnw(Le) = 1. (19)

The small-scale Hurst exponent H can then be derived from Eq. (18) by linear regression in191

ln(r/Le):192

ln[− lnw(r)] = 2H ln
(

r
Le

)
. (20)
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5. Application to the MODIS AOT product193

The proposed variability model was evaluated using the AOT product (collection 5 level 2, 550194

nm wavelength) from the MODIS instrument on the Terra satellite (Levy et al. 2010). MODIS is195

on polar-orbit, observing a 2330 km-wide swath. There are gaps in MODIS observations near the196

equator, while the measurements from different orbits overlap near the poles. The aerosol retrieval197

creates a “10 km” product, which has 10 km resolution at nadir, extending to 40 km at swath198

edge. We took a one-year-long (2006) global AOT dataset with 10 km resolution and computed199

the means, variances, and structure functions for the data from overlapping 10◦× 10◦ cells (with200

ocean and land treated separately). The centers of the cells form a grid with 5◦×5◦ resolution. In201

order to avoid the effects of overlapping orbits on the satellite data at high latitudes we restricted202

our retrievals to the area between 60◦S and 60◦N. Here we present the results of our analysis only203

for the measurements over ocean, where variability of surface albedo is small compared to that of204

AOT.205

Computation of structure functions follows the procedure outlined in Section 2. For a given day206

and a given 10◦× 10◦ cell we take all available 10× 10 km pixels. If the number of these pixels207

exceeds a threshold of two hundred regardless of their distribution within the cell, we proceed208

with the analysis and consider all possible pairs of pixels. For each pair of pixels we determine209

the distance and the difference in AOT between them. After this we collect these parameters210

from all pairs and use them to construct a histogram of square difference in AOT vs. distance211

between pixels using a 10 km bin size. This histogram is regarded as the SF for this cell. Note212

that the computation of SFs for 2D datasets implies statistical isotropy, thus, the resulting structure213

function is the directionally averaged representation of AOT variability. We estimate the mean and214

the standard deviation of the AOT in the cell using the data from the available pixels and use these215
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values to parameterize the SF according to our model, as described in Section 4. This procedure,216

applied to all admissible cells, provides a global daily dataset of τ̄ , s, and the SF parameters Le and217

H on a grid with 5◦ resolution (our 10◦× 10◦ cells overlap). Combining these parameter values218

over multiple days gives us a time series, which we average over a month (using only the days219

when the data are available) to obtain the monthly mean values. The averaging helps to reduce220

the statistical noise in the dataset. It appears that the above described parameterization does not221

always provide a good fit to the observed SF due to insufficient sample size (see Section 6 for222

details). While the SF parameters still have a qualitative meaning in such cases, we modify our223

analysis (as described in Section 7) to better explore the information content of the data.224

6. Sampling effects225

It is generally difficult to characterize the accuracy of structure functions computed from satellite226

data, since in each case we have to deal with a single realization of the stochastic process governing227

the variability in the AOT. The statistics computed using this realization may deviate from those228

of the (hypothetical) complete statistical ensemble, so we have to assume that this deviation is229

not significant. Using multiple datasets does not solve this problem since the AOT variability230

parameters are not the same for different times, locations, and sample sizes. The size of the231

sample (10◦× 10◦ in our case) is a free parameter to be chosen by the investigator. It should be232

large enough to collect enough satellite pixels for statistical analysis, while still sufficiently small233

to reveal spatial variability in the derived statistics. Another issue with the SF analysis, as well as234

with any statistical method applied to satellite data, is whether the AOT values at the pixels where235

retrievals are available are representative of the whole sample area. This is of particular concern if236

the number of available pixels is small or their spatial distribution is uneven. Note that over ocean,237

less than 10% of all global 10 km boxes in the MODIS product have valid AOT retrieval due to238

12



avoidance of clouds and sunglint. We deal with this issue by setting a threshold on the number of239

data pixels in the sample, and also by controlling the quality of SFs (those that are too noisy to be240

well fit by our models are discarded).241

To give an example of the effect of sample size on the retrieved statistical parameters we compare242

structure functions and their parameterizations from two datasets representative of different scales243

(shown in Fig. 2). One of these areas is a 120◦×70◦ region covering more than half of the Pacific244

Ocean, while the other is its local subset – a typical 10◦×10◦ cell used in our analysis. The data are245

from January 17, 2006. The top left panel of Fig. 3 shows the regional structure function (the AOT246

data used for the SF computation is shown in the insert). We see that 5000 km scale is sufficient247

to observe the beginning of the SF’s saturation. The AOT in this sample has a mean of 0.13 and a248

standard deviation of 0.062. Despite some noise at larger scales this SF fits our variability model249

well with Le = 815 km and H = 0.39. The top right panel of Fig. 3 shows the same SF (red curve)250

over a smaller lag range (up to 1500 km) together with the SF from the 10◦× 10◦ subset (green251

curve). We see that while the local SF largely inherits the shape of the regional one, the 1000 km252

sampling range is not sufficient to reach the scale at which the SF saturates. Note also that the253

the local standard deviation of 0.042 is 30% smaller than that for the large region. The bottom254

panels of Fig. 3 demonstrate that the local SF can be fit by our model in different ways depending255

on whether the local (bottom left) or regional (bottom right) variance value is used yielding very256

different values of Le: respectively 165 and 845 km.257

A qualitative analysis of the influence of the number of pixels on the computation of the SF258

is presented in Fig. 4. This plot shows the complete local SF from Fig. 3 (green curve) and the259

number Np of pixel pairs contributing to this SF at each scale (black curve). This number increases260

with the lag at small scales, while decreasing at large scales due to the effect of finite sample size.261

It looks like the effect of Np on the SF starts to dominate once a threshold is crossed. The SF262
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monotonically increases with lag and is in good agreement with its regional analog (Fig. 3 (top263

right)) up to the scale of 1100 km (dashed line in Fig. 4), at which point it “breaks”. The number264

of pairs at this lag is 1800. The reason for this behavior is in the rapid growth at this point of265

N−1/2
p , which determines the statistical uncertainty of the SF computation. This is illustrated in266

Fig. 4 by two orange curves corresponding to S2± const ·N−1/2
p (the constant here is taken equal267

to 2max(S2)). The admissible scale range with a number of pairs larger than this value is shown in268

Fig. 4 by the blue horizontal line. Besides the part with r > 1100 km, this range does not include269

the first two bins corresponding to lags of less than 20 km. We will see below that such a scale270

range is sufficient for SF parameterization.271

The example described above demonstrates that there are two negative effects of having a smaller272

sample size on SFs and their parameterizations. First, the reduction in the number of pixel pairs273

especially affects the large-scale range, where the structure function is expected to saturate to274

its asymptotic value. This may yield “incomplete” SFs showing no saturation at all. Second, the275

dependence of the AOT variance on the sample size (when this size is small) may lead to ambiguity276

in parameterization of SFs.277

7. Information content of “incomplete” structure functions278

While the example from the previous section shows that an “incomplete” (not reaching satura-279

tion) structure function cannot be used for the retrieval of regional-scale statistics, such SFs can280

still provide valuable information on AOT variability at specific geographic locations. A closer281

look at the top right panel of Fig. 3 reveals a feature in the local SF curve at scales smaller than282

600 km distinguishing it from the regional SF. We call this feature a “partial saturation”. The bot-283

tom left panel of Fig. 3 demonstrates that the shape of the local SF in this scale range is consistent284

with our model and using of the local variance in the fitting process. The fit yields H = 0.56 and285
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Le = 165 km. This behavior can be explained by the presence of trends in small samples. These286

trends reflect the non-stationary nature of AOT variability at small scales (where it behaves as a287

FBM) and are averaged out in statistics for a sufficiently large dataset. To explain the shape of the288

partial saturation feature we decompose (using e.g., linear regression) the 1D or 2D small-scale289

AOT sample into a sum of two independent components: a trend (which is close to a linear func-290

tion) and a stationary field. Then, according to Eq. (7), the total SF can be represented as a sum291

of SFs of these components. By the nature of this decomposition the stationary component’s SF292

quickly saturates at scales smaller than the typical trend length. The structure function of the trend293

component has the form S2(r) ∝ r2 (corresponding to fractal model with H = 1). The plot of a294

sum of such two functions (see Fig. 5) is similar to those in Figs. 3 and 6. Here we see a partial295

saturation at smaller scales (inherited from the stationary SF) followed by an increase at larger296

scales where the trend’s SF starts to dominate. This pattern does not affect scales larger than the297

typical length of a trend.298

The “strength” of a trend can be evaluated by the difference between the AOT variance in the299

sample and the stationary component variance inferred from the saturation value of its SF. For300

example, we see that the trend contributions to the SFs in Figs. 3 (bottom left) and 6 (a) are301

weak since in these cases the AOT variances in the samples can be explained by the stationary302

components alone. On the other hand, the SFs from Fig. 6 (b-e) show indications of stronger303

trends.304

While some trends can be present in an ambient aerosol layer (as is likely to be the case in305

Fig. 3), stronger trends may indicate the presence of aerosol plumes transported above the marine306

boundary layer (MBL) from remote continental sources. Such plumes are large in scale and rela-307

tively “smooth” since they are not affected by boundary-layer turbulence. They are also localized308

(being a “plume”) by proximity to their sources and characteristic wind patterns. This localization309
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induces trends in AOT between the center of the plume and its edges. This allows us to assume a310

two-mode aerosol structure with a transported mode located above the MBL and associated with311

the trend component in AOT, and a local (or MBL) mode located within the MBL and associated312

with the stationary component in AOT.313

The parameters of the transported mode SF cannot be retrieved using the local AOT variance,314

however, the MBL mode SF can be separated and characterized fairly well due to its small-scale315

saturation (see Appendix B for a description of the technique). Knowing the mean and the variance316

of the MBL AOT allows us to also determine the parameters of the transported mode by subtraction317

of the MBL values from those of the total SF.318

Besides the two-mode method, we also continue to employ the single-mode technique described319

in Section 4. It uses the local variance and derives the values of Le and H. While the quality of320

the fit of the SF to a single-mode model may be less than perfect, the characteristic lengths Le321

obtained in this way still provide a proxy for the scale of total (not just MBL) AOT variability.322

8. Examples of structure functions from MODIS dataset323

Figure 6 presents examples of the structure functions computed using MODIS data from 5 dif-324

ferent 10◦× 10◦ ocean regions (shown in the top left panel). All the data are from the same day,325

August 18, 2006, and the pixels used are shown in the inserts. In three out of five of the presented326

cases SFs show pronounced partial saturation at scales below 400 km indicative of strong trends in327

AOT. One of the exceptions is the case from the relatively pristine Pacific Ocean that is unaffected328

by long-range aerosol transport (Fig. 6(a), similar to bottom left panel of Fig. 3). The absence of a329

trend contribution to the AOT variance and the short characteristic length of the MBL component330

(Le = 65 km) suggest that the aerosol in this area is predominantly from local sources, e.g., sea331

spray. The SF from African coastal waters (Fig. 6(b)) looks quite different. A large AOT value332
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(1.0) and partial saturation in the SF are consistent with significant amounts of Saharan dust in333

this region. There the aerosol has essentially a 2-layer structure with a lower local aerosol (e.g.,334

sea spray) within the marine boundary layer (which typically has a height of 500 – 600 m) and335

an elevated dust layer transported from continental sources at 2 – 5 km above the sea level. If336

we assume that τ ∝ s then two thirds of AOT in this case comes from the elevated layer. The337

single-mode estimate of the variability scale is large (Le = 475 km), while the MBL component’s338

SF has a much more modest scale Le = 115 km. Besides locally produced sea spray, the MBL can339

also contain some dust falling from the elevated layer. Figure 6(c) presents the SF from an area340

off the coast of equatorial Africa that is known to be affected by biomass burning smoke from the341

continent. While this is quite an interesting region to study, the data look consistently noisier than342

those from other places. The relatively large ratio s/τ̄ = 0.75 indicates intermittency (presence of343

isolated high values) in the sample, and may point to undetected clouds below the smoke layer.344

Some inconsistency between MODIS and CALIOP AOT from this region and season was also re-345

ported by Redemann et al. (2012). The plot in 6(d) shows the SF from the northern Indian Ocean346

off the coast of the Somali Peninsula. This area is affected by dust transport from the Arabian347

Peninsula. This structure function looks similar to that for the Saharan dust case (Fig. 6(b)) and348

has similar parameters, however, the AOT here is much smaller: 0.4. The SF from the middle of349

the Indian Ocean (Fig. 6(e)) also has a pronounced partial saturation feature, while the AOT ≈350

0.1 there is as small as in the Pacific Ocean case. This may indicate the presence of a rather thin351

elevated aerosol layer transported by the West winds (which are strong in this area in Summer)352

from the southern part of Africa.353
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9. Geographical mapping of AOT variability354

The parameters of the structure functions derived from the MODIS global satellite dataset to-355

gether with the means and variances of the AOT can be used to characterize aerosol variability356

on a planetary scale. We illustrate this possibility by constructing 5◦× 5◦ resolution maps of the357

AOT variability parameters averaged over the month of August 2006. Figure 7 presents maps of358

the mean AOT, its standard deviation, and the ratio of the standard deviation to the mean. It is in-359

teresting to observe that this ratio lacks features associated with high AOT areas (such as Saharan360

dust or biomass burning smoke), and the whole range of s/τ̄ variability is quite narrow: between361

0.3 and 0.6.362

The SF parameters Le and H derived using the single-mode approach are presented in Fig. 8.363

The larger values of both of these parameters, especially Le, correspond to the areas where con-364

tinental aerosols are advected over the ocean: Saharan dust to the West of northern Africa and365

biomass burning smoke to the West of the sub-equatorial part of this continent, dust from the Ara-366

bian Peninsula spreading into the northern Indian Ocean, and also smoke and pollution transport367

from South America, Africa, and Australia driven by the westerly winds of the Southern Ocean368

(especially in the southern Indian Ocean). Except for the latter case, these areas are associated369

with large AOT values (see Fig. 7 (top)). One can observe an unusual low-value feature in the plot370

of H going in a South – North direction in the western Pacific, close to the international dateline.371

This artifact is probably caused by a known minor problem with the definition of the MODIS day372

(sometimes an orbit crossing the dateline is counted on the wrong day) and can also be seen in373

some other datasets (see e.g., Redemann et al. (2012)).374

Under certain assumptions (described in Section 7 and in Appendix B) the structure function375

parameterization allows us to split the total AOT into the elevated (transported) and the MBL376
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modes. While the structure function of the elevated mode cannot be reliably characterized, the377

MBL component’s SF can be extracted and fitted by our model. The typical values of Le for this378

component are around 100 km and show little geographical structure, while the exponent H varies379

between 0.2 and 0.5 with some decrease towards the Southern Ocean. In some cases (such as380

the one presented in Fig. 6(a)) only one mode is detected in the SF. In our computations of the381

averages we attribute such a single-mode AOT to the elevated mode if Le > 150 km, and to the382

MBL mode otherwise. The geographical distributions of the AOT components will be discussed383

in Section 10 in comparison with GCM output.384

10. Comparison with GCM output385

While producing a plausible qualitative picture, the proposed layer separation technique needs386

to be evaluated by comparison with 3D aerosol datasets. We obtained such dataset from the NASA387

Goddard Institute for Space Studies (GISS) general circulation model (GCM) simulations for the388

same month of August 2006 used in examples of MODIS data described above. GISS ModelE2389

(Schmidt et al. 2014) produces 3D AOT fields with 2◦ resolution in latitude and 2.5◦ in longitude.390

Vertical resolution of the model is defined in sigma units so it varies with surface pressure. Con-391

verted to a height it is about 200 m at sea level and increases with altitude. The simulated AOT is392

divided between several aerosol species: dust, sea salt, biomass burning, industrial pollution, and393

secondary organic aerosols. Calculation of the boundary layer height in the model is based on the394

“Richardson number criterion” as described by Yao and Cheng (2012).395

The monthly averaged mean AOT map from the GCM simulations is presented in Fig. 9 (top).396

Visual comparison between this map and that in Fig. 7 (top) reveals a number of qualitative397

deviations of the model results from the observations including a notable lack of Saharan dust, a398

smaller AOT in the Caribbean, and the presence of a large plume off the coast of Peru that is not399
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seen in the MODIS data. The largest model-satellite differences are seen in the Southern Ocean,400

which is known to be one of the most difficult regions on the planet for both observations and401

modeling. There the GCM-produced AOT values are as high as 0.3 – 0.4, while MODIS detects402

only background aerosols with an optical thickness of 0.1 or less. These discrepancies in AOT403

can be caused by many factors, detailed analysis of which is outside the scope of this study. For404

example, the satellite retrievals can be affected by inadequate cloud screening, while the AOT in405

the GCM may be biased by an anomalously large MBL height in the Southern Ocean (clearly seen406

in Fig. 9 (bottom)), as well as by uncertainties in the assumed size distributions and hygroscopic407

properties of sea salt aerosols.408

Figure 10 presents the partition of the total AOT into the above-MBL (top) and within-MBL409

(bottom) components. The plots on the left show the results from MODIS SF analysis, while the410

right panels present the AOTs obtained from the partition of the GCM AOT profiles by the MBL411

height (Fig. 9 (bottom)). Note that the MODIS-derived maps in Fig. 10 were “enhanced” to make412

them look similar to the GCM plots: MODIS AOT was interpolated from the original 5◦×5◦ grid413

(as in Fig. 7), to the 2.5◦× 2.5◦ grid (similar to that of the model) and then smoothed using a414

moving average. The larger model-satellite differences in the component optical thicknesses are415

seen in the same regions as those in the total AOTs, e.g., in the Southern Ocean (where the model416

attributes most of the AOT to the MBL component). As to the mode separation in general, we417

see that in the regions with long-range transport of large aerosol masses (Saharan dust, biomass418

burning in the western Africa) the SF analysis of the MODIS data has more aerosol in the boundary419

layer than the model.420

The partition of the AOT into two modes allows us to compute the fraction of the total AOT that421

is in the elevated mode. This parameter can be used as an indicator of long-range transport, even422

when the transported aerosol mass is optically thin. Fig. 11 presents the geographical distributions423
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of this ratio derived from the observations (left) and from the GCM data (right). Above, we424

mentioned that mixing between aerosol layers in the model is weaker than in the SF analysis.425

This means that the GCM AOT ratio plot has more contrast than its MODIS analog: large AOT426

ratios are larger, while the small ones are smaller. Thus, in order to facilitate comparisons between427

aerosol transport features in the model and observations and to make the corresponding maps more428

similar, we increased the contrast in Fig. 11 (left) by reducing the color range.429

The geographical distribution of the AOT ratio in Fig. 11 (left) is similar to that of Le in the430

single-mode approach that is shown in Fig. 8 (top). This confirms that large-scale features in AOT431

are associated with elevated plumes. In addition to the West African biomass burning and the dust432

advected from the Sahara and the Arabian Peninsula, the two panels of Fig. 11 show a number433

of more subtle similarities that are not readily seen in the total AOT plots. One of these transport434

features is the plume off the coast of Peru and Equador. The GCM classifies this plume as a435

combination of biomass burning and secondary organic aerosols, while it can also include some436

dust advected from the coastal Sechura Desert. Another common case is a smaller plume off the437

other coast of South America in the vicinity of Sao Paulo, Brazil. In the model this is identified438

as secondary organic aerosol, however the location of the plume also suggests that there may439

be contributions from Brazilian forest fire smoke transported by North-West winds and pollution440

from the Sao Paulo industrial area. The advection of industrial pollution (and, at lesser extent,441

biomass burning) from the eastern coast of South Africa across the Indian Ocean is more strongly442

pronounced in observational data than in the GCM results, although it is present in both datasets.443

The same can be said about the feature off the north-western coast of Australia having very small444

AOT (less than 0.1), which is probably associated with smoke. We should note, however, that the445

quality of the aerosol mode separation at such small AOTs may be questionable because of the446

limited accuracy of MODIS retrievals (cf. Levy et al. 2010). The largest differences between the447
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GCM results and our retrievals are seen in the Pacific. While our interpretation of MODIS data448

indicates long-range transport in the South Pacific by the westerly winds, the model, as can be449

seen in Fig. 10, attributes most of the aerosol there to the boundary layer. In the North Pacific the450

situation is opposite: the model shows trasport from North America (especially northern Mexico),451

while we see no indication of this in the satellite data. We also see less transport from the US East452

Coast than is suggested by the model.453

11. Conclusions454

We introduced a new statistical model for variability of atmospheric AOT. It is based on a repre-455

sentation of AOT fields as realizations of a stochastic process, that is the exponent of an underlying456

Gaussian process with an autocorrelation function of the form given in Eq. (16). The AOT in this457

model has a lognormal PDF with the mean τ̄ and the standard deviation s, while its structure func-458

tion has the analytical form defined by Eq. (12) with two parameters: the characteristic length Le459

and the scaling exponent H. The AOT fields obeying our model formulation are similar to a frac-460

tional Brownian walk with the Hurst exponent H at small scales (r� Le), while become stationary461

at large scales (r� Le). This behavior is reflected in the shape of the SF: it has a power-law form462

at small lags r, while approaching a constant in the large-scale limit. This constant is equal to463

double the AOT’s variance indicating, as expected, that AOT values from distant points are statis-464

tically independent. This asymptotic behavior of the SF gives our model an advantage compared465

to the traditional fractal (scale-invariant) model, in which the structure function has a power-law466

form at any scale, thus, diverging in the asymptotic regime. In the fractal framework, variability467

description for a realistic field often requires an artificial split of the scale range into several parts468

equipped with different fractal models and separated by scale breaks.469
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The simple analytical form of the SF in our model facilitates its use for parameterization of470

AOT statistics derived from remote sensing data. We gave examples of such applications using471

the MODIS AOT product (over ocean) at 10 km spatial resolution. We demonstrated using the472

data from 120◦× 70◦ area in Pacific Ocean that our statistical model adequately describes AOT473

variability on a regional scale with SF saturation occurring around 5000 km lag (Fig. 3 (top left)).474

We also computed the means, standard deviations, and SFs of the AOT field for a one-month-long475

global dataset consisting of overlapping 10◦×10◦ sample cells, centers of which form a grid with476

5◦ spacing. Examples of SFs from a variety of such samples are presented in Fig. 6. While477

10◦× 10◦ or higher grid resolution is necessary to capture geographical differences in the vari-478

ability patterns of AOT, this sample size appears to be too small for saturation of the SF to be479

observed. This together with scaling of the AOT’s variance prevents us from performing a com-480

plete parameterization of these structure functions over the whole available scale range. However,481

some important information on AOT variability can still be obtained from these SFs based on their482

behavior at scales below 400 km, where they often exhibit partial saturation. This feature is in-483

dicative of a split in variability between non-stationary trends and stationary components that we484

attribute to local processes. The partial SF describing the stationary component saturates at scales485

around 100 km, so it can be extracted and parameterized according to our model. The presence of486

a strong trend in the data (that may be associated with long-range transport) can be detected even487

qualitatively, simply by looking at the shape of the SF. In such a case the variance corresponding to488

the partial saturation value of the SF is significantly smaller than the total variance in the sample.489

While, rigorously speaking, we only observe the split in the total column AOT variability rather490

than that in aerosol mass, we can formally associate the large- and small-scale variability patterns491

with two aerosol modes each having its own fraction of the total AOT. One of these modes cor-492

responds to locally produced aerosol located within the marine boundary layer, while the other493
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represents non-local aerosol processes, such as long-range transport above the MBL. Geograph-494

ical mapping of the results presented in Figs. 8 and 10 – 11 confirmed that areas where larger495

values of characteristic lengths and higher fraction of elevated mode AOT are observed are also496

known to be affected by long-range aerosol transport (desert dust, biomass burning smoke, etc.).497

The advantage of our method is in its ability to detect transport of relatively thin aerosol plumes498

that are not clearly identified in the total AOT datasets.499

The set of variability parameters that can be derived from satellite data in addition to the500

mean AOT has the potential to enhance comparisons between remote sensing datasets and cli-501

mate models. High spatial resolution models can now provide data for structure function analy-502

sis. Our preliminary tests showed that the 1.125◦×1.125◦ resolution of the European Centre for503

Medium-Range Weather Forecasts (ECMWF) model (Morcrette et al. 2009; Benedetti et al. 2009)504

or the Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) (Takemura et al.505

2000, 2005; Geogdzhayev et al. 2014) is sufficient for the computation of structure functions for506

10◦×10◦ samples. However, even when a climate model does not have such high spatial resolu-507

tion, it can still be used to calculate the elevated mode fraction in AOT, which is comparable to508

that obtained from SF analysis of satellite data. Indeed, the 3D AOT from a climate model can be509

divided using the boundary layer height into the MBL and elevated components. In this study we510

presented a qualitative example of such a comparison between AOT mode separation results from511

MODIS SF analysis and from the GISS GCM simulations. Despite some differences described in512

Section 10, both datasets showed many similar aerosol transport patterns. Such comparisons are513

very useful for further development and testing of the SF technique, and also for evaluating and im-514

proving the models, especially in terms of their long-range transport and aerosol lifetime. We plan515

to continue such comparisons in the future, also involving aerosol height resolved measurements516

such as these made by Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) onboard of517
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NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite518

(Winker et al. 2009, 2010).519
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APPENDIX A527

Statistics of modelled AOT fields528

Here we derive the statistics of the exponential AOT field529

τ = eη . (A1)

based on a Gaussian process η having the mean µ , variance σ2, and autocorrelation function w(r).530

The field τ has log-normal PDF with the mean531

τ̄ = eµ+σ2/2 (A2)

and the variance532

s2 = (eσ2
−1)τ̄2 = (u−1)τ̄2. (A3)

Here we introduced the parameter533

u = eσ2
=

s2 + τ̄2

τ̄2 . (A4)
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We start derivation of the structure function for τ with computation of the corresponding autocor-534

relation function. The covariance between τ1 = τ(t) and τ2 = τ(t + r) has the form535

Cov(τ1,τ2) = (τ1− τ̄)(τ2− τ̄) = τ1τ2− τ̄
2. (A5)

To compute it we need to know the mean of τ1τ2 = exp(η1 +η2). The random variable η1 +η2536

being a sum of normally distributed variables is normally distributed itself. It has the mean 2µ and537

the variance538

Var(η1 +η2) = 2Var(η)+2Cov(η1 +η2) (A6)

= 2σ
2[1+w(r)].

Thus, the exponent of this variable is distributed log-normally with the mean539

τ2τ1 = e2µ+σ2(1+w) = τ̄
2uw. (A7)

Thus, the autocorrelation function for τ has the form540

W (r) =
τ̄2(uw(r)−1)

s2 =
uw(r)−1

u−1
. (A8)

Note that as w(0) = 1 and w(r→ ∞) = 0, W (r) has the same properties. The structure function541

can be computed according to Eq. (11):542

S2(r) = 2s2 u−uw(r)

u−1
= 2s2 u

u−1
(1−u−z(r)), (A9)

where z(r) = 1−w(r). It is easy to see that S(0) = 0 and S2(r→ ∞) = 2s2. In the small-scale543

limit, if we assume z(r) ∝ r2H , the structure function has the same power-law behavior:544

S2(r→ 0) ∝ r2H , (A10)

indicating that AOT behaves as Fractional Brownian motion with the Hurst exponent H.545
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APPENDIX B546

Fitting structure functions with partial saturation547

The real satellite data examples presented in Fig. 6 indicate that in many cases the structure548

function shapes deviate from the form described by Eqs. (12), (16), and Fig. 1. The characteristic549

concave feature in the 100–500 km scale range (partial saturation) suggest that these SFs are550

superpositions of two components corresponding to trend(s) and a relatively stationary AOT field.551

While the trend component’s SF is expected to be simply quadratic in scale, it appears that we552

can successfully fit the measured structure function using the same model for both components.553

This means that we formally assume that aerosol consists of two independent modes or layers. We554

need to keep in mind, however, that while the MBL SF has physical meaning, the representation555

of the trend contribution as a formal SF is an abstraction used only for fitting. Since parameters of556

the “trend SF” have no real meaning, we relax the requirement of H < 1 for it to improve fitting557

flexibility.558

We assume that the stationary and the trend components are statistically independent as if they559

indeed correspond to two layers separated by height. Then the statistics of these components560

satisfy the system of equations following from Eqs. (5 – 7):561

S2(r) = S(1)2 (r)+S(2)2 (r), (B1)

τ = τ1 + τ2, (B2)

s2 = s2
1 + s2

2, (B3)

where τ , s, and S2(r) are known, while τ1, τ2, s1, s2, and the parameters of the two SF components562

are to be determined. Here and below index “1” corresponds to the trend component, while index563

“2” corresponds to the MBL component. The retrieval algorithm is essentially a curve fitting of564

the measured S2(r) by the family of component SFs with parameters satisfying the conditions Eqs.565
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(B2) and (B3). In order to make this fitting more robust, and to reduce the number of retrieved566

parameters (which may have trade-offs between them), we complement the latter two equations567

with another condition:568

s1

τ1
=

s2

τ2
(B4)

(which is equivalent to u1 = u2). We see in real satellite data shown in Fig. 7 that the ratio s/τ569

indeed is not very variable, so the assumption of Eq. (B4) is quite natural. In our approach first the570

single-mode retrieval is performed to get an estimate Le of the variability scale. Then, the fitting571

is performed over a single free parameter α ∈ [0,1], which is the fraction of the trend component572

in the total variance. In this notation573

s1 = s
√

α, and s2 = s
√

1−α, (B5)

and the retrieval method utilizes the assumption that that the MBL component’s structure function574

S(2)(r) quickly saturates and is close to the constant 2s2
2 in the scale range between Le/2 and Le.575

Thus, for each value of α the trend SF in this range can be computed as576

S(1)2 (r) = S2(r)−2s2
2 = S2(r)−2s2(1−α). (B6)

This SF is then fitted in the range [Le/2,Le] according to the method described in Section 4, given577

u1 =
s2

1
τ2

1
+1 =

(s1 + s2)
2

τ2 +1 (B7)

= (
√

α +
√

1−α)2 s2

τ2 +1.

Here we used that according to Eq. (B4)578

τ1 =
s1

s1 + s2
τ. (B8)

After the parameters of S(1)(r) are determined its analytical form is derived from Eqs. (12) and579

(16) and subtracted from S2(r) to obtain S(2)2 (r), which is also parameterized using the single-580
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mode method. For each value of the parameter α the tightness of the fit in the lag range [0,Le]581

of the measured structure function S2(r) by the corresponding analytical form S(1)2 (r)+S(2)2 (r) is582

evaluated, and the value of α is determined by the best fit.583

Figure B1 illustrates the above fitting method on the example of the data from the Indian Ocean,584

which is also presented in Fig. 6(e). The red curve corresponds to the SF derived from the data.585

The partial saturation is clearly seen at the scales below 400 km. The initial single-mode fit based586

on the variance observed in the sample is shown by the dashed blue curve. The discrepancy587

between the measured SF and the fit are evident, since the SF exhibits large-scale behavior incon-588

sistent with the local variance s2 (the asymptote 2s2 of the fitting curve is shown by the horizontal589

dashed line). The 2-mode fit assuming the same variance s2 is depicted by solid blue curve, while590

its trend and MBL components are represented in respectively orange and green. This fit also sig-591

nificantly deviates from the measured SF at scales larger than 400 km, however, it closely captures592

the SF’s shape at smaller scales allowing us to single out the MBL component’s SF and to split the593

total AOT into within- and above-MBL parts.594
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FIG. 2. Two regions of different scales, MODIS data from which were used for computation of structure

functions presented in Fig. 3.
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FIG. 3. Structure functions computed from MODIS data over South Pacific Ocean obtained on January 17,

2006. Top left: SF (red) for large 120◦× 70◦ area exhibiting statistical saturation at large scales. Blue curve

represents the parametric fit to the data. Top right: the same SF as in the top left panel (red) but for shorter

scale range in comparison with local SF (green) from a 10◦×10◦ area. Maps presenting MODIS pixels used for

SF computations are included in both plots as inserts. Bottom left: Fit to the local SF using locally measured

standard deviation. Bottom right: Same as at bottom left but when the large-scale value (from top left plot) of

the standard deviation is assumed.

740

741

742

743

744

745

746

38



0 500 1000 1500
LAG, km

0.000

0.002

0.004

0.006

0.008

A
O

T
 S

T
R

U
C

T
U

R
E

 F
U

N
C

T
IO

N
 S

2

0

1×10
4

2×10
4

3×10
4

4×10
4

N
U

M
B

E
R

 o
f P

IX
E

L
 P

A
IR

S

FIG. 4. Structure function from Fig. 3 (green) and number of MODIS pixel pairs Np contributed to the SF

value at each lag (black). The lag interval with admissible number of pairs (more than 1800) is indicated by

the horizontal blue line. The two orange curves corresponding to S2± const ·N−1/2
p illustrate the growth of SF

computation uncertainty with the decline of Np.

747

748

749

750

39



  

 

 

  

 

 

  

 

 

+ =

stationary trend

partial saturation

FIG. 5. Schematic representation of the partial saturation feature seen in structure functions from Figs. 6 and

3 as a sum of stationary and trend components.
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FIG. 6. Structure functions computed using MODIS data from various 10◦×10◦ ocean regions (shown in top

left plot) obtained on August 18, 2006: (a) relatively pristine Pacific Ocean unaffected by long-range aerosol

transport; (b) African coastal waters with strong presence of Saharan dust; (c) area off-coast of equatorial Africa

affected by biomass burning smoke; (d) northern Indian Ocean with presence of dust from Arabian Peninsula;

and (e) middle of the Indian Ocean, data from which still shows presence of the transported aerosol. In all plots

the red curve corresponds to the SF derived from the data, while the fits obtained from single-mode and 2-mode

models are shown by respectively solid and dashed blue lines. The SFs and parameters of the stationary MBL

AOT component are shown in green. Maps showing the actual MODIS pixels used for SF computations are

included in each plot as inserts.
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FIG. 7. Monthly averages of MODIS retrievals from August 2006: mean AOT (top), its standard deviation

(middle), and the ratio of the standard deviation and the mean (bottom).
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FIG. 8. Same as in Fig. 7 but for retrieved structure function parameters of single-component model: Le (top)

and H (bottom).
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FIG. 9. Maps of monthly averages from GISS GCM output: total AOT (top) and MBL height (bottom). The

simulations are for August 2006.
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FIG. 10. Maps (for August 2006) of monthly averaged AOTs of transported (above-MBL, top) and MBL

(bottom) components from MODIS structure function analysis (left) and from GISS GCM output (right). The

data presented in left panels have been enhanced for comparison with GCM: interpolated to 2.5◦×2.5◦ grid and

smoothed by moving averaging. Note that monthly averages for each mode were taken only over days when this

mode was present, thus, the components means do not add up to the total mean in Fig. 7 (top).
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MODIS SF: AUG 2006, Transported mode fraction in AOT
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FIG. 11. Same as Fig. 10 but for the fractions of the above-MBL AOT in the total one. The color bars in the

left (MODIS) and right (GCM) plots are chosen different for better comparison of the geographical features.
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Fig. B1. Details of structure function fitting method. The data is from the middle of Indian Ocean also

presented in Fig. 6(e). The red curve corresponds to the SF derived from the data, while the fits obtained from

single-mode and 2-mode models are shown by respectively dashed and solid blue lines. The SFs for the trend

and stationary (boundary layer) AOT components from 2-mode retrievals are shown by respectively orange and

green curves.
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